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Abstract
This paper presents “optimal identification,” a framework for using experimental data to identify the optimality conditions
associated with the feedback control law implemented in the measurements. The technique compares closed loop trajectory
measurements against a reduced order model of the open loop dynamics, and uses linear matrix inequalities to solve an
inverse optimal control problem as a convex optimization that estimates the controller optimality conditions. In this study,
the optimal identification technique is applied to two examples, that of a millimeter-scale micro-quadrotor with an engi-
neered controller on board, and the example of a population of freely flying Drosophila hydei maneuvering about forward
flight. The micro-quadrotor results show that the performance indices used to design an optimal flight control law for a
micro-quadrotor may be recovered from the closed loop simulated flight trajectories, and the Drosophila results indicate
that the combined effect of the insect longitudinal flight control sensing and feedback acts principally to regulate pitch
rate.

Keywords Insect · Flight · Control · Optimal · Identification · Drosophila

1 Introduction

Many biological control structures exhibit performance and
robustness properties that exceed engineered systems, and
biologically-inspired studies are a potential source for new
methods of controlling engineered problems. A common
problem in many of these studies is testing hypotheses
of how a neural structure processes information. Typi-
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cally, these hypotheses are compared using statistical meth-
ods or root-mean-square comparisons of the degree to
which predictive models match some other data. Control-
theoretic approaches that can efficiently reduce a library of
automatically-measured motions into an underlying control
model are applicable to such problems.

Flying insect control is an example of natural per-
formance, since many species of insects are capable of
robustly navigating through unknown environments while
using extremely constrained neural resources. A detailed
model of the mechanisms by which this stabilization and
control is achieved would provide a significant contribu-
tion to the understanding of insect-based flight control,
and the ability to replicate this robust control of flight
performance would represent a significant leap forward
in the control of vehicles having strict size, weight, and
power (SWaP) limitations. Biologically motivated design
principles for feedback control could unlock substantial
improvements in the control of engineered flight at the
micro aerial vehicle (MAV) scale. In particular, a detailed
understanding of the overall performance of the insect’s
onboard feedback controller could provide critical insight
into the associated sensing requirements of an insect’s feed-
back strategy, and eventually allow engineered controllers
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Fig. 1 An engineered and a biological flight platform were selected
for feedback control optimality extraction via the optimal identification
(OID) technique

that are tuned to achieve the same closed loop performance
targets.

In this study, a novel control-theoretic technique called
“optimal identification” (OID) is introduced and applied
to a small-scale quadrotor, Fig. 1a, and to measurements
of insects, Fig. 1b, in free flight, establishing a method
of extracting a flight control law and biologically-relevant
design principles from flight trajectory measurements. The
technique combines reduced order open loop flight dynamics
modeling, closed loop system identification, feedback con-
trol law extraction, and a linear matrix equality formulation
of the solution to the inverse optimal control problem. The
result is a set of optimality conditions that allows researchers
to quantify the relative performance of the insect’s control
law, weighted against the control input deviations required to
achieve such performance. The insect optimality conditions
may be used in the goal of translating insect control laws
into engineered systems through the use of existing optimal
control design techniques.

This paper is structured as follows. Section 2 reviews pre-
vious work on insect based flight control. Section 3 describes
the approach as a 4-part “optimal identification” method
involving open loop modeling, closed loop measurement,
feedback control extraction, and inverse optimal control. Sec-
tion 4 describes the methods by which the trajectory data
were gathered for the example platforms studied. Section 5
presents the results of each of the four OID stages, including
a comparison of several individual insects’ feedback control
strategies.

2 Background and previous work

Insect flight control systems incorporate specialized arrays of
sensing and actuation systems. The visual system, consisting
of the compound eyes (Wehner 1981; Heisenberg and Wolf
2013) and the ocelli (Krapp 2009), the antennae (Schneider
1964; Sane et al. 2007), and the network of mechanosensors
on the head, body and wings (Weis-Fogh 1949; Dickinson
1990) are all involved in flight control response. Dipteran
insect feedback systems also incorporate halteres, a set of
oscillating appendages analogous to hind wings which may
operate as biological gyroscopes (Pringle 1948; Thompson
et al. 2008). The strain sensors at the base of the wings of
non-dipteran insects may also quantify gyroscopic forces
(Thompson et al. 2008; Eberle et al. 2015). Flying insects
actuate their wings through large powermuscles in the thorax
and small control muscles at the base of each wing. Together,
these muscles allow the insect to adjust the wingbeat pattern
precisely and on a stroke-to-stroke basis (Dickinson and Tu
1997), providing small, subtle changes in wingbeat pattern
that alter the aerodynamic forces and moments on each wing
and modulate the wingbeat-average forces and torques about
the center of mass of the insect (Muijres et al. 2014). In
addition, many larger flying insects actuate their hind legs or
abdomen (Camhi 1970), whichmay produce control torques.

Flight control systems are often modeled as a high speed
inner loop involved in stabilization and an outer loop control
system involved in navigation or behavioral responses (Dick-
inson and Muijres 2016). The outer loop system is used to
perform behavioral flight responses such as search maneu-
vers during plume tracking (Breugel and Dickinson 2014;
Kennedy 1983), evasivemaneuvers (Muijres et al. 2014), and
landing responses (Breugel and Dickinson 2012). The inner
loop system works to negate external or internal perturba-
tions during flight, and is therefore used to regulate an insect
to a trajectory or flight condition. For example, the inner loop
allows insects to regulate their flight velocity (David 1978)
and heading (Götz 1968), to maintain a stable body posture
(Sherman and Dickinson 2003), and to remain at a desired
height (Straw et al. 2010). In this study we will focus on
the dynamics and design of this inner loop system, particu-
larly the sub-systems that allow insects to stabilize flight and
regulate heading.

Control of yaw axis rotations has received the most exten-
sive study. Early research into yaw dynamics of flying insects
focused on open loop flight responses where tethered fruit
flies were presented with various visual inputs and com-
pensatory wing motions were measured (Götz 1968). These
experiments were followed by tethered closed loop exper-
iments whereby maneuver responses of tethered fruit flies
were fed back to the presented visual patterns, by allowing
the fly to freely rotate about its yaw axis, or by measuring
either yaw torques (Dickinson and Lighton 1995) or changes
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in wingbeat pattern (Götz 1987) to quantify changes in
maneuvers. The flight responses in tethered animals may be
different from those of freely flying insects, and more recent
experimental work has focused on free flight control dynam-
ics, both experimentally and via modelling (Ristroph et al.
2010). The combined experimental and modeling work on
yaw control has indicated that dipteran flapping wing insect
flight involves a passive aerodynamic mechanism (Faruque
and Humbert 2010a; Hedrick and Robinson 2010) that stabi-
lizes yaw movement dynamics. As a result, yaw movements
in flying insects are highly damped, which might simplify
yaw control. For example, flying fruit flies require only a
simple proportional-derivative controller for yaw stabiliza-
tion, in which the fly feeds back deviations in sideslip angle
and yaw rate to subtle changes in wingbeat average angle-
of-attack (Ristroph et al. 2010).

In contrast with the highly damped yaw dynamics, pitch
and roll dynamics in many flying insects are underdamped
and inherently unstable. Open loop models of flying locusts
(Taylor and Thomas 2003) indicated that longitudinal flight
control requires more sophisticated feedback. Ristroph et al.
(2013) predicts that the requirement for more involved con-
trol structures persists for a range of other flying insects,
hummingbirds, and even flapping micro air vehicles. Roll
dynamics can be the least damped and thus most unstable
flight mode, as indicated by experimental perturbations of
freely flying flies along the roll axis (Beatus et al. 2015).
Analysis of the response dynamics showed agreement with
proportional-integral controllers. Halteres are involved in
measurement of roll rates, but their low sensitivity to small
roll velocities results in a poor signal to noise ratio, and
integration of this noisemay be problematic. Therefore, addi-
tional sensory inputs, such as those from the visual system,
are required. The changes in wingbeat pattern responsible
for producing compensatory roll torques are strikingly small
and similar to the kinematics changes found for flies that
perform roll maneuvers during banked turns (Muijres et al.
2015), highlighting the precision with which flying insects
need to adjust the wingbeat pattern for active flight con-
trol. While previous studies have focused on the individual
sub-systems of the insect flight control system, in natural
conditions these sub-systems are often strongly coupled and
the composite function and performance of the flight con-
trol system may not be a natural extension of each individual
block. Therefore, a number of studies have begun to address
the free flight dynamics of flying insects, whereby open
loop flight dynamics about all six degrees-of-freedom (DoF)
were modeled. For these studies, the aerodynamic forces on
the animal need to be modeled, as these forces are largely
responsible for the open loop flight dynamics. Faruque and
Humbert (2010a, b) and Cheng et al. (2010) used curve-fitted
quasi-steady aerodynamics models Sane (2003); Fry et al.
(2003), while Liu and colleagues (Gao et al. 2011) used

computational fluid dynamics (CFD) to extract numerical
models. These studies provide useful insight into the stabil-
ity of different eigenmodes of bodymovements as well as the
degree of coupling of various body rotations, but the results
describe only the open-loop, or uncontrolled dynamics of
the system. Since biological examples of insect flight control
invariably incorporate closed loop feedback control, a gen-
eralized framework for studying the combined flight control
responses would facilitate a much more representative study
of natural flight.

While the sensing aspect of insect flight control has
been studied both experimentally and via analytic and com-
putational modeling, the exact form of feedback used to
fuse each sensor output into a unified controller remains
unknown. Sherman and Dickinson (2004, 2003) hypothe-
sized that linear summation of visual and mechanosensory
feedback was used to fuse experimental measurements taken
on the respective responses for single axes, and engineering
synthesis of controllers that make use of bio-inspired sensors
has been demonstrated (Conroy et al. 2009). The method by
which insects fuse their individual responses to combined
state perturbations are not known, nor are the relative gain
structures of the control strategies.

Amethod for deriving experimental data-drivenmodels of
the flight controller, such as controller form, cross couplings,
and relative gains, could provide an understanding of how
the insect’s flight controller responds to composite perturba-
tions in multiple states. Such data-based controller models
could be used to quantitatively estimate the sensor perfor-
mance requirements (e.g., bandwidth, noise level) needed
to robustly implement an insect control strategy. Inverse
optimal control approaches, first proposed for single input
systems in Kalman (1964), provide a possible mechanism to
interpret the combined effect of a sensing and feedback con-
trol strategy on the open loop flight dynamics. In this work,
we introduce optimal identification, a method of estimating
the onboard flight controller and interpreting the flight con-
troller’s effects on, or optimality with respect to, the open
loop plant dynamics.

3 Approach, derivation, andmodeling

This section describes the optimal identification approach
generally, and then derives and describes its four compo-
nents in sequence. In this work, we address systems with the
general plant and controller interconnection structure shown
in Fig. 2a. In these systems, we have a model P̂ of the open
loop plant dynamics P , while we assume the sensing and
feedback system K is unknown.

We seek to use our open loop model P̂ , combined with
measurements of the state perturbations x(t) and control per-
turbations u(t), to reverse engineer the flight controller K̂
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(a)

(b)

Fig. 2 Block diagram of the general optimal identification approach,
showing closed loop time-histories of state x(t) and u(t), which may be
used to identify a control law K̂ and the optimal control design matrices
(Q̂, R̂)

for both an engineered (microquadrotor) and natural (insect)
system. We first break the process of estimating and inter-
preting the controller K̂ into four components as shown in
Fig 2b: open loop flight dynamics modeling, closed loop
flight dynamics system identification, feedback control law
extraction, and optimal control inversion.

Figure 3 applies the general form shown in Fig. 2b to
insect flight control study. Optimal identification is useful
to determine the combined effect of the sensing and control
block, i.e., the combined sensing and control relationship
between x and u, shown as a dashed box in Fig. 3.

3.1 Open loop dynamics modeling

The open loop dynamics model P̂ forms a reference by
which one can estimate the effects of closed loop con-
trol. Recent reduced order models of flight dynamics based
on quasi-steady aerodynamics, wingstroke averaging, and
linearization have shown promise at describing the uncon-

trolled insect flight system (Hedrick et al. 2009; Faruque
and Humbert 2010b). The model applied in this study uti-
lizes experimentally-derived aerodynamic coefficients for a
Drosophila wing and a quasi-steady assumption to estimate
aerodynamic loading with varying wing kinematics (Dick-
inson et al. 1954). Changes in stroke averaged loads during
perturbations from a reference flight condition are used to
construct a linear dynamical model according to small per-
turbation analysis, an approach that has been shown to extract
open loop dynamics similar to those produced by computa-
tionally expensiveCFD techniques (Sun et al. 2007;Gao et al.
2011; MacFarlane et al. 2011). Similarly, control input per-
turbations may be used to quantify the aerodynamic effects
of control inputs to create an input to output flight dynamics
model.

Free-flying Drosophila insect trajectories were collected
using an automated high speed camera setup and image
tracking software (Muijres et al. 2014). Translational speeds
(u, v, w), angular rates (p, q, r), aerodynamic forces
(X ,Y , Z) and torques (L, M, N ) were defined relative to
the stability axes S = {ŝx , ŝy, ŝz} as shown in Fig. 4. Tra-
jectory analysis was limited to sequences involving straight
and level forward flight, featuring small body pitch angle
θ excursions, small accelerations, and low climb or descent
speed.

Aprerequisite for any linear dynamicalmodel is the choice
of kinematic reference condition. For this study, the reference
condition for linear dynamical modeling was taken to be the
ensemble average of all recorded wing kinematics, which
were assumed to be harmonic motions. For example, left and
right wing stroke angles were described by

φR(t) = ΦR cos(2π f t) + φoff,R, (1)

φL(t) = ΦL cos(2π f t) + φoff,L. (2)

Perturbations to the collective stroke amplitudeΦ = 1
2 (ΦR+

ΦL), stroke bias φoff = 1
2 (φoff,R + φoff,L), and stroke plane

angle βc = 1
2 (βR + βL) terms in Fig. 5 were used as control

Fig. 3 Optimal identification
works to extract design rules for
feedback controllers from
closed loop experimental data
by finding a design structure for
the combined control/sensing
block (dashed) in the insect
flight control task from state
x(t) and input u(t) recordings
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Fig. 4 Forces, torques, and translational and angular rates were defined
relative to stability axes S passing through the center of mass G

inputs. Lateral-directional deviations such as βd = 1
2 (βR −

βL) were digitized, but their effects were outside the scope
of this longitudinal study.

3.2 Closed loop trajectory measurement

Some mechanism for capturing closed loop trajectories is
needed as input data. Optimal identification is applica-
ble to trajectories generated by both simulated dynamics
and by experimental measurement. Section 4 presents a
detailed description of the microquadrotor simulation and
the hardware, methods, and experimental design used in the
measurement of freely flying Drosophila.

3.3 Closed loop flight dynamics system
identification

After trajectories from the micro-quadrotor simulation and
free flight insects were collected, system identification was
used to identify the closed loop dynamics. For the quadrotor,
the control inputs were considered longitudinal perturbations
to the rotor speeds u = (δlon) ∈ [−1, 1], linearly related to
pitch and roll rates. For the insect case, compositewingstroke
parameters u = [Φ,βc, φoff]T were used as inputs . Example
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Fig. 6 Example flight trajectories used for feedback control law iden-
tification

flights used in time domain system identification for both
of the platforms are shown in Fig. 6, showing longitudinal
quadrotor flight and an insect in forward flight making right
and left turns.

The free parameters in the longitudinal microquadrotor
flight dynamics identification were (Xu , Xq , Zu , Mxi , Mx ,
Mu , Mq , and Mθ . The parameters in the longitudinal insect
flight dynamics model were (Xu , Zu , Zw, Mu , Mw, Mq , XΦ ,
Xφoff , Mβ , ZΦ , Zφoff , MΦ , Mφoff), arranged as follows:

A =

⎡
⎢⎢⎣
Xu 0 0 −g
Zu Zw 0 0
Mu Mw Mq 0
0 0 1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 XΦ Xφoff

0 ZΦ Zφoff

Mβ 0 Mφoff

0 0 0

⎤
⎥⎥⎦ . (3)

A summary of the state x and input u vectors used in this
paper is included in Table 1.

Fig. 5 Insect longitudinal flight control inputs are defined as gross wingstroke parameters
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Table 1 State and control input definitions for the micro-quadrotor
(MQ) and Drosophila hydei (DH) dynamics models

Vehicle Signal Value

MQ x [u, q, θ]
MQ x̄ [xi , x, u, q, θ]
DH x [u, w, q, θ]
MQ u [δlon]
DH u [Φ,βc, φoff]

3.4 Feedback control law extraction

By comparing the closed loop system in Sect. 3.3 against
the open loop model developed in Sect. 3.1, the combined
effects of feedback control may be determined. This section
describes how this determination may be accomplished in
a norm-minimizing sense. The extraction problem may be
stated as follows: =

Given An open loop system ẋ = Ax + Bu, A ∈ R
n×n, B ∈

R
n×p, and a corresponding closed loop dynamics matrix

identified closed loop system Acl ∈ R
n×n ,

Find the linear state feeback law u = −Kx implemented by
the closed loop system’s controller.

Solution The closed loop dynamics matrix identified in
Sect. 3.3may bewritten as a function of the open loop system
in Sect. 3.1 as

Acl = A − BK (4)

and solved for BK to yield a linear matrix equation

BK = A − Acl. (5)

In the typical case that where n > p, the linear matrix
equation in K is overdetermined, and for n > p and B full
column rank, a solution for K satisfying (5) does not exist.
However, a norm-minimizing gain matrix K̂ may be com-
puted via the generalized left inverse

B† =
(
BTB

)−1
BT (6)

by computing

K̂ = B† (A − Acl) . (7)

K̂ minimizes the normed residual such that
∥∥∥BK̂ − (A − Acl)

∥∥∥
F

≤ ‖BK − (A − Acl)‖F , (8)

where ‖·‖F denotes the Frobenius norm, defined by ‖M‖F =√
tr(M∗M).

While an extracted feedback control law K̂ may be useful
for implementation on a vehicle with the same configura-
tion, it is not immediately clear what aspects of the overall
closed loop performance the control law maximizes or how
to implement the same control design strategy on a vehicle
with different dynamics. Section 3.5 addresses this question
by extracting optimality-based metrics.

3.5 Optimal control inversion

The inverse optimal control problem asks: Given an open
loop system dynamics model and a feedback control law,
what performance metric J (or cost functional �(x,u))
does that feedback control law optimize? A more practical
statement of the inverse control problem, as a function of
measurements, is

Determine the objective function �(x,u) that mini-
mizes J = ∫

�[x(t),u(t), t]dt for a given set of state
measurements x(t) ∈ L2 and input measurements
u(t) ∈ L2, both recorded along some trajectory.

In this application, we will use the linear quadratic regulator
form, which is a particular choice of �(x,u) = xTQx +
uTRu, for which the forward control problem statement is

LQR control problemGiven an open loop system (A, B) and
Q ≥ 0, R > 0, (x,u) ∈ L2, with (A, Q1/2) detectable, find
the feedback gain u = −Kx that minimizes the cost

J =
∫ ∞

0
xT(t)Qx(t) + uT(t)Ru(t).

The LQR control problem is an optimal control prob-
lem that has well-known analytic solutions. The associated
inverse optimal control problem for the linear quadratic reg-
ulator is:

Inverse LQR problemGiven an open loop system (A, B) and
feedbackgain K̂ , does there exist Q̂ ≥ 0, R̂ > 0, (x,u) ∈ L2,
with (A, Q̂1/2) detectable and for which u = −Kx mini-
mizes the cost

J =
∫ ∞

0
xT(t)Q̂x(t) + uT(t)R̂u(t).

If so, compute Q̂, R̂.
Using the solution of the LQR optimal control problem,

one may write constraints that the Q̂ and R̂ matrices must
satisfy in order to be a solution of the inverse LQR problem.

(A − BK̂ )TP + P(A − BK̂ ) + K̂T R̂ K̂ + Q̂ = 0,

P ≥ 0, Q̂ ≥ 0 (9)

BTP − R̂ K̂ = 0,

R̂ > 0 (10)
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ATP1 + P1A < Q̂,

P1 > 0. (11)

In the general case, Q̂, R̂ satisfying (9) through (11) may
not exist, or may not be unique. Conditions for existence
may be derived requiring (A, B) controllable and condi-
tions on the cost �(x,u) and reachable states (Fujii and
Narazaki 1984). In the case that Q̂, R̂ exist, they are likely
not unique; i.e., there may be multiple Q̂, R̂ that yield
the same gain matrix K̂ . Because diagonal terms have
the most intuitive interpretation, we choose a linear objec-
tive function that yields the “maximally-diagonal” solution
(Aïoun et al. 1994)

min
Q̂,R̂

σ̄
(
Q̂ − diag(Q̂)

)
+ σ̄

(
R̂ − diag(R̂)

)
, (12)

where σ̄ (M) denotes themaximum singular value of amatrix
M .

While the problem of minimizing the cost in Eq. (12)
subject to Eq. (9) through (11) is solved numerically, it is a
non-differentiable convex optimization problem and can be
written as a system of linear matrix inequalities (LMIs). In
the last 10–15years, efficient solvers for these problems have
become available, and the problem can be solved computa-
tionally efficiently with guarantees on both convergence and
global optimality (Boyd et al. 1997). Because the LMIs in
Eq. (9)–(11) and cost minimization in Eq. (12) correspond
to an optimization over a self-dual homogenous cone, the
self-dual embedding technique (Ye et al. 1994) as imple-
mented in SeDuMi (Sturm 1999) allows efficient solutions
or infeasibility certificates. The PenLab semidefinite opti-
mization routine was applied because its implementation in
open-source MATLAB® code provides a user-friendly flex-
ibility to modify the underlying algorithms and build on this
work (Fiala et al. 2013).

4 Simulation and experimental
measurement

The optimal identification technique requires recorded time
histories of the input and state trajectories. This section
describes the acquisition of trajectories for the two examples,
via simulation of microquad trajectories and via experimen-
tal measurement of insect flight trajectories.

4.1 Microquad trajectory simulation

4.1.1 Micro-quadrotor dynamics

The longitudinal open loop dynamics of the micro-quadrotor
linearized about hover were identified, by using position

tracking about hover. Step inputs, doublets, and frequency
sweep rate inputs were applied to the vehicle in flight and
both rigid body states and control input time histories were
collected at 100 Hz using a Vicon motion capture arena.
These responses were used to identify the dynamics of the
system using least-squares and maximum likelihood estima-
tor techniques. The resulting system is shown in Eq. (13) in
state-space form, where δlon ∈ [−1, 1] and is linearly related
to a desired pitch rate.

⎡
⎣
u̇
q̇
θ̇

⎤
⎦ =

⎡
⎣

− 1.35 0.61 − 9.81
6.16 − 9.61 − 54.78
0 1 0

⎤
⎦

⎡
⎣
u
q
θ

⎤
⎦

+
⎡
⎣

0
50.44
0

⎤
⎦ δlon (13)

4.1.2 Optimal position tracking through LQR control

In order to design a position-referenced controller within the
LQR framework, the open loop longitudinal hover dynamics
are first augmentedwith the inertial position x and its integral
xi so that x̄ = [xi , x, u, q, θ ]T.
⎡
⎢⎢⎢⎢⎣

ẋi
ẋ
u̇
q̇
θ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 −1.35 0.61 −9.81
0 0 6.16 −9.61 −54.78
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xi
x
u
q
θ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
0
0

50.44
0

⎤
⎥⎥⎥⎥⎦

δlon (14)

The optimal position controller is designed as a regulator
and then augmented with a new control sensitivity matrix
E to rewrite the state dynamics in terms of error tracking a
reference position. The final closed loop system, with input
δlon = −K x̄, may then be written as

˙̄x = (A − BK )x̄ + Er , (15)

where K is the LQR gain matrix, E the new closed loop
control sensitivity matrix, and r the reference position, with
full-state feedback used for this controller. By choice of E in
Eq. (16), the controller acts on the error between the inertial
position and reference position, and xi state represents the
integral of inertial position error.

E = [−1 0 0 0 0
]T

(16)
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e(t) = x(t) − r(t) (17)

ei (t) =
∫ t

0
edt (18)

4.1.3 LQR synthesis

Design Qin and Rin weighting matrices for the flight con-
troller were chosen as

Qin =

⎡
⎢⎢⎢⎢⎣

10 0 0 0 0
0 10 0 0 0
0 0 5 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

, Rin = 20, (19)

and the solution of the associated algebraic Riccati equation
resulted in the feedback gain

K = [− 0.7071 − 1.4536 − 0.6250 0.1853 1.7632
]
.

(20)

The resulting closed loop system representing the micro-
quadrotor, including position tracking LQR, is

⎡
⎢⎢⎢⎢⎣

ẋi
ẋ
u̇
q̇
θ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 − 1.35 0.61 − 9.81

35.67 73.33 37.68 − 18.95 − 143.7
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xi
x
u
q
θ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

−1
0
0
0
0

⎤
⎥⎥⎥⎥⎦
r (21)

4.1.4 Closed loop simulation

The closed loop longitudinal system with LQR position con-
troller implemented in (21) was simulated usingMATLAB’s
»lsim command with a multi-step square wave position
command (reference), as shown in Fig. 7. The resulting
closed loop time histories were the data used as measure-
ments for the micro quadrotor OID analysis, for which the
longitudinal states (xi , x, u, q, θ) were considered the out-
puts and the reference position command considered to be
the closed loop input.

4.2 Drosophila experimental measurement

Ninety-two trajectories of free-flying Drosophila were col-
lected using an automatedhigh speed camera setup and image
tracking software (Muijres et al. 2014). Biomechanical data
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Fig. 7 Simulation of microquadrotor closed loop response to a multi-
step position tracking command

were digitized at the video frame rate of 7500Hz. While the
majority of flight trials were aerobatic escape sequences, this
study uses only sequences involving periods of straight and
level forward flight, featuring small accelerations and low
climb or descent speed. To accept a segment for analysis,
deviations in pitch angle were required to be less than 12◦
and deviations from mean forward flight speed to not exceed
10% of the mean flight speed u0 in the trial. The trial was
terminated when an escape maneuver involving a yaw rate
greater than 650◦/s was detected.

System identification requires a continuous method of
estimating the maneuvering control inputs to transform
instantaneous wing quaternion measurements into gross
wingstroke parameters, such as β, φoff, and Φ that are dis-
cretized at measurement frequency. A least squares planar
fit to a moving time window with the length of a single
wingstrokewas used to continuously estimate thewing stroke
plane and the arctangent function used to extract a continu-
ous time history of each wing’s stroke plane angle β. Each
wing’s digitized (φ, θ) stroke variables were rotated by an
angle −β as

[
γL
ξL

]
=

[
cosβL − sin βL

sin βL cosβL

] [
φL

θL

]
(22)

to reveal in and out-of plane motion. Here, γL represents
in-plane motion of the left wing, and ξL is the left wing’s out-
of-plane motion. The in-plane component γ of each wing’s
motion was used to identify amplitude Φ and bias φoff by
peak andzero-crossingdetectiondiscretely and linearly inter-
polated to the sample frequency. The collective (symmetric)
βc,Φ, andφoff perturbations from the trial’smean valuewere
used as longitudinal control inputs for system identification.
An example time history of β during a slalom is shown in
Fig. 8, which was used as input to the Drosophila OID prob-
lem.
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β
β

β

Fig. 8 Differential, and perturbations of stroke plane angle inputs for
an example insect performing a slalom maneuver, digitized at 7500 Hz

5 Results and discussion

5.1 Open loop flight dynamics modeling

5.1.1 Micro quadrotor open loop dynamics modeling

The micro-quadrotor dynamics shown in Eq. (13) were used
as the open loop reference model to compare against for the
microquadrotor control extraction task. Deviations from the
behavior described by this open loop model were assumed
to be due to closed loop control, which allowed the feedback
control law K̂ and its optimality conditions (Qin, Rin) to be
estimated.

5.1.2 Drosophila open loop QSmodeling

An ensemble average of the measured insect wingstroke
motions was used as reference wing motions to generate an
open loop flight dynamics quasi-steady wingstroke model.
Figure 9 shows the reference wing motions in the (3–1–
2) rotation sequence (φ, θw, αg) measurement terms most
commonly used in insect flight measurement (Hedrick 2008;
MacFarlane et al. 2015).

The estimated open loop Drosophila dynamics model
is a linearized, wingstroke-averaged model based on a
quasi-steady translational lift and drag force aerodynamics
(Hedrick et al. 2009; Hedrick and Robinson 2010; Faruque
and Humbert 2010a, b). The quasi-steady assumption mod-
els lift and drag as functions exclusively of the instantaneous
air speed Up(t) and angle of attack αp(t) at a point on the
wing.

Lift is modeled as a function of air density ρ, wing area S,
and non-dimensional second moment of area r̂2 = ∫ 1

0 ĉr̂2dr̂
by

φ,
 

θ
,

α

φ
θ

(a)

(b)

Fig. 9 Reference flight wing kinematics a over three wingstrokes and
b in the phase plane

L(t) = 1

2
ρ‖Up(t)‖2Sr̂22CL(αp(t)), (23)

where ĉ and r̂ are normalized chord and radius, respectively.
Drag is similarly modeled with a drag coefficient CD. Both
lift and drag coefficients are curve fits to experimental data
(Fry et al. 2003) using RoboFly.

Local wing motion is assumed to be wing rotation and
body translation and rotation expressed into the wing frame
as a function of wing angular rate ωw, body angular rate ωb,
body translational rate vb, and the vector from the CG to the
point on the wing Rp:

[
Up(t)

]
w = ωw(t) × [

Rp
]
w + [vb(t)]w

+ [
ωb(t) × [

Rp(t)
]
b

]
w

, (24)

where [·]b indicates a vector expressed in wing frame coor-
dinates and [·]w indicates wing frame coordinates. Angle of
attack αp is

αp(t) = tan−1
(
Up(t) · p̂3
Up(t) · p̂1

)
. (25)
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Given a set of wing and body kinematics, the quasi-
steady aerodynamics model predicts flapping wing aerody-
namic forces with only modest computational expense. The
experimentally-determined lift and drag curves incorporate
some aerodynamics effects, such as three dimensional effects
of a rotating wing and leading edge and tip vortex interac-
tion, but neglect addedmass, rotational lift, and wake capture
effects.

Using small disturbance theory, the resulting nonlin-
ear system of ordinary differential equations describing the
flight dynamics may be reduced to a linear, time periodic
system. In vehicle flight dynamics analysis, results from
averaging theory suggest that the long term, low frequency
evolution of body motion may be described using the stroke-
averaged aerodynamic forces (Vela and Burdick 2003). For
theDrosophila insect considered here, the wing flapping fre-
quency (200 Hz) is more than 10 times the frequency of the
fastest rigid body natural mode (about 6 Hz Graetzel et al.
2010). For larger insects, the frequency separation assump-
tion must be examined (Wu and Mao 2012).

Wingstroke-averaged aerodynamic forces are then used
for the calculation of the stability and control derivatives A,
B. The stroke-averaged forces are F̄ = 1

T

∫ T
0 F(t)dt , where

F(t) = [X(t), Y (t), Z(t)]T is periodic at wingstroke period
T . The result is a linear, time invariant (LTI) model that esti-
mates the flight dynamics of the insect, and is applicable for
control analysis. The derivedDrosophila open loopLTI flight

dynamics model is ẋ = Ax + Bu, where x = [
u w q θ

]T
,

u = [
Φ βc φoff

]T
, and

A =

⎡
⎢⎢⎣

− 4.017 − 0.0212 0.002 − 9.81
0.1188 − 4.14 0.0227 0
6281.0 7161.0 − 29.8 0

0 0 1.0 0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0.3555 10.01 0.3766
− 16.83 − 0.0855 − 0.0138
31066.0 − 14399.0 59088.0

0 0 0

⎤
⎥⎥⎦ . (26)

5.2 Closed loop system identification

5.2.1 Microquadrotor

The closed loop simulation data were used to identify an
estimate of the closed loop system using least squares linear
regression. The states of the simulated closed loop system
are shown in Fig. 10 and were used as the regressors for the
least squares identification. The computed state derivatives
are shown in Fig. 11 and formed the measured output vector
for the linear regression.
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Fig. 10 Time history of microquadrotor states from closed loop simu-
lation
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Fig. 11 Time history of micro quadrotor state derivatives from closed
loop simulation

The identified closed loop model

⎡
⎢⎢⎢⎢⎣

ẋi
ẋ
u̇
q̇
θ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 − 1.35 0.61 − 9.81

35.48 72.93 37.47 − 18.84 − 142.98
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xi
x
u
q
θ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

− 1
0
0
0
0

⎤
⎥⎥⎥⎥⎦
r

compares well to the idealized closed loop dynamics. To
validate the identified model, the computed and identified
models were simulated in response to a different input type
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Fig. 12 Identified closed loop microquadrotor model validation using
a noisy chirp signal

(noise and chirp signal) and the comparison seen in Fig. 12
shows excellent agreement.

5.2.2 Drosophila

Time domain system identification was also conducted on
each insect flight segment meeting the acceptance require-
ments in Sect. 3. 4.2. Matched filtering, consisting of a
moving average with window size corresponding to the
detected wingbeat frequency, was first applied to inputs and
outputs to reduce high frequency measurement noise. Time
domain system identification was conducted using equa-
tion error methods in SIDPAC (Klein and Morelli 2002).
An example fit for the trial at u0 = 368 mm/s can be
seen in Fig. 13, which shows good agreement between
measured data and simulated time histories generated by run-
ning the identified model. The linear-time invariant model
is not able to capture the low-amplitude, high frequency
wingstroke oscillations in pitch rate that would require
time varying or periodic models, but are not likely to
form the bulk of the feedback path in larger scale flight
control.

The identified model has a closed loop dynamics matrix

Acl =

⎡
⎢⎢⎣

− 511.4 174.7 0 − 9.806
1795.0 − 697.7 368.4 0
1.542 0.6319 − 37.9 0
0 0 1.0 0

⎤
⎥⎥⎦ , (27)

which indicates that closed loop control acts to increase
damping on all the longitudinal axes.

θ

Fig. 13 The closed loop Drosophila system identification fit compares
well to the recorded flight trials

5.3 Feedback control law extraction

5.3.1 Micro quadrotor

The insect’s longitudinal feedback control law is extracted
using the Frobenius norm minimizing method discussed in
Sect. 3. 3.4. In particular, Eq. (7) estimates the feedback gain

K̂mq = [ xi x u q θ

δlon − 0.7033 − 1.446 − 0.6208 0.1831 1.748
]
.

(28)

When the gain estimate is compared to the true gain in
Eq. (20), the estimated gains show very good agreement,
with deviations ranging from 0.54 to 1.16%.

5.3.2 Insect

The insect’s longitudinal feedback control law is extracted
using the same Frobenius norm minimizing method used on
the microquadrotor, but applied to each individual trial. For
example,

K̂ =
⎡
⎣

u w q θ

Φc 106.5 − 41.15 21.91 1.831 × 10−6

βc 48.57 − 16.67 − 0.3413 − 0.0003465
φoff,c − 44.06 17.7 − 11.6 − 8.536 × 10−5

⎤
⎦

(29)

is the identified feedback control law for the trial with mean
forward flight speed u0 = 368.4 mm/s. While this feedback
gain estimate is useful for estimating the sensing require-
ments for feedback on insects, and could be implemented on a
bio-mimetic flapping wing micro-aerial vehicle having wing
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Fig. 14 OID estimates the quadrotor Q̂, R̂ matrices very well when
compared to the input design matrices, with a mean identification error
of 2.1%

kinematic motion programs that implement the same stroke
amplitude, bias and stroke plane angles as control inputs,
a more general interpretation may be found by considering
the role of dynamics and extracting optimal feedback design
rules, a task addressed in Sect. 5.4.

5.4 Optimality principles

5.4.1 Micro quadrotor optimality principles

The optimal quadrotor matrices were extracted as

Q̂ =

⎡
⎢⎢⎢⎢⎣

0.49 0 0 0 0
0 0.49 0 0 0
0 0 0.25 0 0
0 0 0 0.049 0
0 0 0 0 0.052

⎤
⎥⎥⎥⎥⎦

, (30)

where Q̂ has been normalized by R̂ to resolve the ambiguity
in scale and any terms smaller than 1×10−17 were considered
zero. Figure 14 shows that the identified Q̂/R̂ ratio compares
well to the design Q/R ratio fromEq. 19, with nonzero terms
showing identification errors ranging from 1.1 to 4.4% of the
correct value, and a mean identification error of 2.1%.

5.4.2 Drosophila optimality principles

The optimality metrics for the insect flight control law are
extracted via the maximally-diagonal inverse LQR method
as

Q̂ =

⎡
⎢⎢⎣

u w q θ

8.95 − 1.91 − 0.91 0.0030
− 1.91 0.54 − 2.90 − 0.0033
− 0.91 − 2.90 29.15 − 1.60
0.0030 − 0.0033 − 1.604 0.25

⎤
⎥⎥⎦,

R̂ =
⎡
⎣

Φ βc φoff

0.43 − 0.054 1.08
− 0.054 − 0.23 − 0.41
1.08 − 0.41 2.34

⎤
⎦ (31)

for the example forward flight speed u0 =368.4 mm/s. The
relativeweights of the quadratic costs involving each state are
shown in Fig. 15a for several sequences at varying forward
flight speeds from 152 to 571mm/s. The results indicate that,
in most trials, the combined effect of the insect flight control
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Fig. 15 Feedback control law optimality metrics for longitudinal state
(Q̂) and control (R̂) in Drosophila for varying flight speeds u0 indicate
that deviations in pitch rate are penalizedmore strongly than other states
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law penalizes pitch rate deviations most strongly. The find-
ing that the composite feedback system penalizes pitch rate
deviations most strongly is supported by engineered and bio-
logical studies that have found numerous sensor structures
capable of encoding pitch rate, including mechonosensory
(haltere) feedback, optic flow (lobula plate tangential cell),
and fixed focus simple eyes (ocellar) mechanisms. In con-
trast, the suite of sensors available to the insect to encode
and feed back other states, such as orientation, distance, or
translational rates, is more limited. The relative weights of
the quadratic cost involving each input are shown in Fig. 15b,
indicating that the recorded trials selected show diversity of
willingness to expend control effort.

As opposed to the feedback control law in Sect. 5.3, the
optimality conditions presented here could allow us to imple-
ment the identified feedback control principle on a platform
with different dynamics, e.g., translating insect-based feed-
back control laws to a micro-quadrotor platform through
LQR control. Although the feedback implemented on the
insect may not, in general, represent an engineered system
explicitly designed using LQR control, the use of inverse
LQR is appropriate for controllers that can be written as a
linear static gain, since the implementations of many linear
control techniques (e.g., pole placement, PID) have equiva-
lents in LQR design space which are found using the optimal
identification method. These LQR-equivalents are useful for
interpreting a particular control law or for generating a par-
allel implementation that penalizes similar inputs.

5.5 Discussion of limitations, assumptions, and
future improvements

While the study began with analysis of 1,542,288 video
frames, of which an insect was robustly tracked in 459,303
frames containing 92digitized flight sequences, each includ-
ing an escapemaneuver response to stimulus, the diversity of
behaviors within the flight trials was not designed for iden-
tifying sequences that consist of small deviations about a
straight and level flight, thus only 11 trials contained sec-
tions of straight flight, which were at varying flight speeds
andwere limited to portions of the trial prior to the large devi-
ations found in escape sequences. Because the insect was not
reacting to a known stimulus in this period, the trials stud-
ied represent a cross section of both individual insects and
potentially varying behaviors, limiting the ability to validate
insect system identifications. Given the lack of a strong stim-
ulus to induce a behavior and the range of speeds covered in
the analyzed trials, the consistency in strong pitch rate feed-
back is remarkable, but the range of behaviors may have led
to a spread in the control effort results. Based on the success
with accurately and repeatedly identifying the microquadro-
tor dynamics where researchers have more control over the
flight test structure, an experimental study explicitly designed

to digitize insectsmaking smallmaneuvers about straight and
level flight may be useful in focusing the analysis on a spe-
cific behavior and increasing the precision of results.

TheDrosophila insect dynamicsmatrices also have a large
condition number, and large scale ratios can cause numeri-
cal sensitivities with the pseudo inverse and linear matrix
inequality portions of the method. The numerical properties
of the solution may be addressed by state-scaling or normal-
ization of states in order to improve the condition number of
thematrices. However, scaling does have the effect of obscur-
ing the units on Q̂, R̂, especially the off-diagonal terms, and
a thorough treatment of scaling effects is reserved for a future
study.

Insect feedback control laws need not necessarily be opti-
mal with respect to the states chosen in this formulation,
and they are not constrained to linear behavior. For the cases
in which insect strategies may be regarded as optimal, the
optimality may be with respect to states that are not accessi-
ble to current free flight measurement technologies, such as
physiological variables or internal neuronal states. The linear
analysis conducted herein assumes a structure on the optimal
performance index J , and there may be value in considering
more complex cost functions for which the inverse optimal
problemmay not be convex. However, the current analysis is
not limited to feedback controllers developed through opti-
mal control mechanisms. Instead, it provides a mechanism to
interpret the effects of linear static gain feedback strategies
K̂ . Insects may adapt their feedback optimality conditions
over time and may also show variations over (among other
parameters) species, individual, or life stage. OID presents
a concise method to evaluate these changes over time and
individual and to build physically intuitive, mathematically
rigorous models of insect feedback control.

6 Conclusions

This paper presented an “optimal identification” (OID) tech-
nique for identifying the optimality conditions associated
with a given control law by comparing closed loop trajectory
information against an open loop dynamics model. The tech-
nique involves four components, including open loop plant
modeling, closed loop system identification, feedback gain
extraction, and inverse optimal control. The OID technique
was then applied to the two examples of a micro-quadrotor
with a known LQR controller, and a freely flyingDrosophila
hydeimaneuvering about forward flight. The results provided
an extracted flight control law, which in the quadrotor case,
had amean deviation of 2.1% from the input design variables.
When OID was applied to free flying insect trajectories, it
indicated that the combined effect of the insect longitudi-
nal sensing and feedback control law is primarily to regulate
pitch rate, a finding which can help to explain the effects of
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insect sensory systems that have numerous sensors that each
encode angular rotation rates. The identification of the over-
all performance targets with which the insect flight feedback
system is optimal can help give MAV designers a composite
closed loop performance strategy to robustly stabilize small
vehicles in uncertain environments. Because of the maturity
of optimal controller designs such as LQR, theOID approach
can be used to understand the sensing requirements of an
insect’s feedback strategy, and to eventually generate engi-
neered controllers that are tuned to achieve the same closed
loop performance targets.
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